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Phase and Bifurcation Diagrams for 
Stationary Distributions 

Luis L. Bonilla 1'2 and Jos~ M. Casado 3 

Received August 12, 1988, final February 1, 1989 

The dynamics of a soft-spin version of the van Hemmen spin-glass model is 
considered in the thermodynamic limit. Phase and bifurcation diagrams 
for quenched distributions are given. Phase coexistence, metastability, and 
hysteretic phenomena are found. 
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1. I N T R O D U C T I O N  

Several years ago, Desai and Zwanzig ~1 and Dawson  ~2) studied the 
dynamics of a mean-field model  having equilibrium phase transitions in the 
the rmodynamic  limit. These works were later extended to problems of 
self-synchronization of nonlinear oscillators, (3) the stochastic mean-field 
Brusselator, (4~ and relaxation oscillations of charge-density waves. (5~ The 
simplicity of  the mean-field coupling makes it possible to find a closed 
equat ion for the evolution of the single-particle distribution function in the 
the rmodynamic  limit. (1 5) Bifurcations of the distribution function charac- 
terize the phase transitions between stat ionary distributions, (1"2) or dynamic  
bifurcations to stable t ime-dependent distributions. (3 57 

As explained in ref. 5, the key reduced equat ion for the single- 
particle distribution can be derived for mean-field models involving 
r andom parameters besides the external noise sources. This is the case 
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of the charge-density waves (5/ where the presence of noisy parameters 
qualitatively alters the phase transition. To learn more about the effects of 
the random parameters, we consider a simple modification of Desai and 
Zwanzig's model. (1) We find that in addition to the stationary distributions 
present in this model (corresponding to para and ferromagnetic phases), 
there are new stationary distributions described by additional order 
parameters (corresponding to spin-glass and mixed phases). New phase 
transitions between these phases appear. Phase coexistence, metastability, 
and hysteresis are possible. 

The model we want to consider is related to van Hemmen's spin 
glasses, (6) whose statics was analyzed in refs. 6-8. Glauber dynamics of van 
Hemmen glasses was studied by Choy and Sherrington. (9) For a recent 
review on spin glasses see Binder and Young. (1~ We consider a soft-spin 
version of the van Hemmen model whose dynamics is described by systems 
of stochastic differential equations. In the thermodynamic limit a reduced 
description for the single-particle distribution function is then available and 
will be analyzed here. 

The statics of van Hemmen's model is exactly soluble in the ther- 
modynamic limit. This model incorporates frustration due to competition 
between ferromagnetic and antiferromagnetic bonds in a way related to the 
RKKY interaction. To be more specific, van Hemmen (6) considers N Ising 
spins interacting via the Hamiltonian 

Jo N 
I IN = - 2 s, s j -  2 JoS, S j -  h 2 s, 

~,j i , j  i - -  1 

(1.1) 

Here sums are over all the spins, the term with Jo > 0 is a ferromagnetic 
coupling, h is an external field, and J~ incorporates the randomness 

j_J 
ij - ~ (~i~y + ~yqi) (1.2) 

where the ~'s and the q's are independent, identically distributed random 
variables with the same even distribution around zero and a finite variance. 
In this paper, we will consider the simple case where ~i, r/j take on the 
values + 1, - 1  with probability 1/2. In this case the lower critical dimen- 
sion is three (ref. 8, Section 5.5). Thus, qualitative features (phases and 
phase transitions) of a model (1.1) but with nearest neighbor couplings are 
preserved by the mean-field model. 

In the thermodynamic limit N--, 0% the free energy per spin corre- 
sponding to (l.1) can be found exactly. The properties of this mean- 
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field model are conveniently described in terms of the following order 
parameters: 

1 N 1 N 

i = 1  i = 1  

1 N 

qZN = ~[  J = I 

It can be shown (7) that the free energy per spin 

f (T)  = kT lira 1/N in Tr e x p ( -  Hx/kT) 
N + c o  

(1.3) 

exists with probability one and it is independent of specific ~. and rt realiza- 
tions, One finds -- f(T)/kT by solving a maximum problem. The solutions 
of the corresponding Euler-Lagrange equations are the different phases. 
There are four such phases characterized by m and q, with 

m N --+ m ,  q l N  --+ q, q2N  --+ q as N ~  

dxj d--[ - p(1 - x~) xj + T1/2wj(t) 

1 N 
k~ (Jo+J~jtlk+J~krlj)(x/--x~), j =  1 ..... N 

Here wi(t) is a Gaussian zero-mean white noise of correlation 

(1.4) 

( w , ( t )  w j ( t ' )  ) = ,~,;~( t - t ' )  

The soft-spins xi are real variables; when /~--+ +oo, they asymptotically 
take on the values ___ 1. The ~i and t/j in (1.4) are as in (1.2). 

In ref. 5 we derived a general result for the one-particle probability 
density corresponding to the system(1.4): Suppose that at t = 0  the 

(a) Paramagnetic (m = 0 = q). 

(b) Ferromagnetic (m r 0, q = 0). 

(c) Spin glass (m = 0, q :~ 0). 

(d) Mixed (mr162 

Phase coexistence and stability questions have also been considered in 
ref. 7. 

The soft-spin version of van Hemmen's model is described by the 
following system of stochastic equations: 
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N-particle probability density PN(t;xl,...,XN; 41 ..... ~N) is a product of 
one-particle densities and that the ~i,~/j are independent, identically- 
distributed random variables with common distribution function p(.) 
[-that is, all the random variables ~1,..., ~v and q~,..., ~]N have the same 
distribution function p, p(~ 1 ),..., P(~/N) ]. Then the one-particle probability 
density obeys the following nonlinear Fokker-Planck equation (NLFPE): 

c~ 1 02 
tP=-~O2 p - ~ x  { I ( A - - ~  x2) x + x + ~(~-Y-~ + ~-~)I p } 

1 = p ( t ,  x;  4, tl) dx 

= (x, p )  = f xp(t, x; 4, ~l) dx do(i) dp(q) (1.5) 

x~ = (x4, p ) 

x-q= (x~, p )  

We have nondimensionalized x, t, and p so that 

Jot--+ t 

(Jo/T) i/2x --+ x 

(T/Jo) ~/2 p(t, x; 4, ~1) ~ p(t, x; 4, q) 

A = #/Jo - 1 

0 = (2Tl~)l/2/J o 

= J / J o  

In (1.5) the normalization condition directly follows from the one for the 
N-particle probability density. That N-~ N Z j= ~ xj tends to ff as in (1.5) was 
proved by Dawson (2) for the Desai-Zwanzig model. Our derivation in ref. 5 
suggests (but does not prove) that a similar central limit result holds also 
in the presence of random parameters. 

In this paper we analyze different stationary solutions of the NLFPE 
(1.5) which correspond to paramagnetic, ferromagnetic, spin-glass, and 
mixed phases. Stability of these phases is analyzed by means of a Liapunov 
function first proposed by Shiino (11) for problems without random 
parameters. Phase coexistence, metastability, and hysteresis cycles are then 
found. We will analyze these phenomena by means of Brownian simulation 
in a future publication. 
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2. Q U E N C H E D  E Q U I L I B R I A  A N D  L I A P U N O V  F U N C T I O N  

2.1. S t a t i o n a r y  Solut ions  of  the  NLFPE and Quenched  Phases 

To find the stationary solutions of the NLPFE,  we solve (1.5) for a 
time-independent probability density such that p and c~xp vanish as 
Ix[ ~ oo. The resulting density is a quenched equilibrium distribution: 

P~ lexp{ Ax2 02 } - -  - -  X 4 - ' ~  22x + 2~x(~--~q + ~/~) 
" 4 " 

(2.1) ; { O.x4 } ( (4 ,~ )=  dxexp A x 2 - ~  +22x+2~x(4-2~+@~) 
o o  

For a quenched equilibrium to exist, the following consistency conditions 
must hold: 

= (x ,  P o )  

x4 = (x4 ,  p o )  

x--6 = (x~/, p o )  

(2.2) 

m 

That ( ln ~, Po) is a convex function of 2, x~, and ~ implies x~=-2~=q. 
The proof is the same as that in ref. 7, pp. 321-322. Thus, we have 
stationary distributions described by two order parameters s and q and 
three dimensionless control parameters A, 0, and :t. As in van Hemmen's 
model, we distinguish paramagnetic (x=0 ,  q=0) ,  ferromagnetic (x v a0, 
q = 0), spin-glass (x = 0, q v a 0), and mixed (x r 0, q r 0) phases. 

For the rest of this section we restrict ourselves to the following simple 
two-valued distribution for the (identically distributed) noises 4 and tl: 

dp(4) = �89 + 1) + 6(4 - 1 ) ]  d~ (2.3) 

Then, Eqs. (2.2) become 

2 = �88 + 4~q) + 2m(22) + m(22 - 4c~q)] 

q = �88 + 4eq) - m(22" - 4c~q) ] 

where 

i~ 0 2 -- (Ax2--TX4~-xy) dx/f 2 m(y) ._~ x exp exp 02 X 4 ~- xy)  dx Ax - -~ 
i 

(2.4) 
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In Fig. 1, we have displayed the phase diagram in the A, 0 plane for 
= 2. Other values ~ > 1 yield qualitatively the same diagram. From (2.1) 

and (2.4) we see that q = 0  if o~=J/Jo=O (i.e., no randomness) and the 
NLFPE (1.5) becomes that of the Desai and Zwanzig. 11) Then, there is 
only a paramagnetic/ferromagnetic phase transition, whose locus in the 
(A, 0) plane we will call the Desai Zwanzig (DZ) line. Since ~ always 
appears multiplying q in the right sides of (2.4), and q = 0 for both para 
and ferromagnetic phases, the DZ line remains unchanged for ~ ~ 0. 

There are four basic regions in Fig. 1. In region 1, the only stable 
stationary solution corresponds to the paramagnetic phase. We shall 
explain later how to decide whether a given solution is stable. In region 2, 
the paramagnetic phase has become unstable and a stable spin-glass phase 
has branched from it. An unstable ferromagnetic solution bifurcates from 
the paramagnetic solution at the DZ line. In region 3, there is coexistence 
between a mixed phase (which sprouts from the spin-glass phase) and the 
ferromagnetic solution, which has become stable. Finally, in the narrow 
region between 2 and 3, spin-glass and ferromagnetic phases coexist. 

What happens when different coexistence lines are crossed is displayed 
in the bifurcation diagram of Fig. 2. There solid lines represent stable 
stationary solutions of (1.5), dashed lines correspond to the unstable 
stationary solutions, and dot-dashed lines are projections on the (q, O) and 

, - -  
\\ 
\\,\ 3 

\\\\ 0 _ 

I I 

- 3  - 2  -1 1 2 3 

Fig. 1. Phase diagram in the plane A =,u/J o -  1, 0 = ( 2 T ~ ) l " z J  o for ~-= J/Jo = 2. The stable 
phases in each region are discussed in the text. The dot-dash line is the DZ line. The diagram 
is symmetric with respect to the A axis. 
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Fig. 2. Bifurcation diagram for the quenched case A = 0.3, ~ = 2, showing the different 
stable (solid lines) and unstable (dashed lines) stationary solutions. Only the octant 0>/0, 
2/> 0, q >~ 0 is displayed because the whole diagram is symmetric with respect to the three 
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A=-0.3 
(t-- 0.5 

Fig, 3. Same as Fig, 2, for c~ = 0.5. 
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(s 0) planes of the mixed solutions. Given the even symmetry of the 
problem, we have represented the first octant of the (q, s 0) space only. 

For  ~ < 1 the bifurcation diagram is depicted in Fig. 3. The only stable 
solutions corresponds to para and ferromagnetic phases. There is a branch 
of spin-glass solutions which is always unstable. The only relevant phase 
transition line is the DZ line. This means that the level of the disorder noise 
(1.2) has to surpass a certain threshold J =  Jo for the spin-glass and mixed 
phases to stabilize. Comparison with the results for van Hemmen's model 
(ref. 7, Sections 7 and 8; notice :t = Jo/J in this reference) shows the bifurca- 
tion diagrams to be alike. Of course, the softness of our spins implies that 

does not saturate as it does for hard spins. 

2.2. Liapunov Function 

In Figs. 2 and 3 we have used a Liapunov function to decide whether 
a given stationary solution is stable. It is 

f ,  p(t, x~ 4, ~) 
H[p(t ,  . )] = J p(t, x; 4, q) In dx dp(~) dp(tl) (2.5) 

Q[p(t, -)] 

02 __ } 
Q[p( t, . ) ] = exp Ax2 - - ~  x4 + 2x[ f + ~(rlx4 + ~ )  ] - f2 - 2~ -x-~ -s 

(2.6) 

The Liapunov function (2.5) is similar to one used by Shiino (11) for the 
Desai and Zwanzig (u model. 

To show that (2.5) is a Liapunov function, we have the prove that H 
is bounded below and that it is a nonincreasing function of t. The second 
property follows from direct algebraic manipulations: 

d 1 
dt H i p ( t , . ) ]  = - ~  (p,  (a~ In p/Q)2) <~ 0 (2.7) 

where we have used 

/ ) p , ~ l n Q  = 0  (2.8) 

To bound H, we use the inequality x In x/> x - 1, x >/0, in the defini- 
tion of H: 

H =  (Q,  (p/Q) ln(p/Q) ) >~ (Q,  p/Q ) - (Q,  1) = 1 - (Q,  1) 
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Here 

f 
Q = exp ~ - (x - 2) 2 - c~(x-~ - xr/) 2 - ~(2-Oq - x ~ )  2 -4- o{(x~ - ~/,/)2 

k. 

-1" [ A  --t- 1 -1- 0{(~2 --t- g/2)3 x 2 - - T x 4  

Therefore, 

H >  1 - exp[c~(x-~- ~-'0) 2] f exp {[-A + 1 + c~(~2 + r/2)] x z 

02} 
4 x4 dx dp({) dp(rl) 

For the noise (2.3), 

- -  ~ [ 02 1 H > ~ l - 4 e x p [ e ( x ~ - 2 - ~ ) 2 ] I  exp (A+l+2e)x2--~x 4 dx 
o--cc 

which is finite for 0 ~ 0. 
From our proof it follows that local minima of H yields stable solu- 

tions of the N L F P E  (1.5). Restricting ourselves to the stationary solutions 
(2.1) (for which x~=-2~=q because of the convexity of (po,  l n ~ ) ,  as 
stated before) 

Ho= H[po] = l po, ln ~o) = t po, ln eXp(~z-~ 2~q2) ) 

i.e., 

H0 = 22 + 27q 2 - (P0, In ~)  = 22 + 2eq 2 - f dp(~) dp(q) In {'(~, p/) (2.9) 

We can now show the following statement. 

The condition that  Ho have a local minimum at y* ~ (2, (2c0 ~/2 q) is 
equivalent to v* being a linearly stable fixed point of the equation 

1 2&j(Po, ln~>=vj, j = l ,  2 (2.10) 

This is also equivalent to the matrix _ 1 2 <o~j= ~0 (Po,  In ~,>/~?v+ ~?v/ having 
eigenvalues 2~ with 12~[ < 1. 

In fact, (Po,  in ~) is a convex function of Vl and v2,17) and therefore 
(p,j is a nonnegative matrix. That  y* is a linearly stable fixed point of (2.10) 
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means the following: Let us start with a trial y sufficiently close to y* and 
solve (2.10) by iteration, y* is a stable fixed point if v --* v* in the interation 
scheme. Clearly y* is a linearly stable fixed point of (2.10) if and only if the 
absolute value of each eigenvalue of q~0 is less than one. In turn, the last 
statement is equivalent to 6 o - q~o. being strictly positive, as the variational 
characterization of the eigenvalues show. But 6 o,- (Pi: is the Hessian matrix 

1 corresponding to (2.10), evaluated at v*. Thus 6i:-q0o.> 0 implies that 5Ho 
has a minimum at v*. QED 

To decide the stability of a given branch of stationary solutions in 
Fig. 2 and 3, we have numerically evaluated the eigenvalues of ~oo. with the 
results displayed there. 

The Liapunov function may in principle be used to visualize the basin 
of attraction of a given stationary solution. In Figs. 4 and 5 we have depic- 
ted the level curves of Ho in (2.9) as a function of ~ and q. Minima of H o 
correspond to stationary solutions of (2.1). To any initial probability 
density p(0, x;~,t /)  with x~=2-~q=q there corresponds a point in the 
~, q plane. We conjecture that if this point is in the basin of a given mini- 
mum in Figs. 4 and 5, the probability density will evolve toward the 
stationary density represented by that minimum. This conjecture is true for 
initial conditions close to the stationary probability densities and near 

I 2 3 4 ' ' 

Fig. 4. Liapunov function for ~ = 2 ,  0=0.5,  A = - 0 . 3 ,  displaying coexistence between 
spin-glass and ferromagnetic phases. Relative minima are marked with a star and unstable 
stationary solutions with a dot. Numerical values are given to the curves so that the deepest 
minimum has the value zero and the absolute maximum has the value 999. The whole 
diagram is symmetrical with respect to both axes. 
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Fig. 5. Liapunov function for e = 2, 0 = 0.4, A =.3r-, displaying coexistence of ferromagnetic 
and mixed phases. 

bifurcation points in Figs. 2 and 3: after a short transient, initial probability 
densities are asymptotically close to a function of the form (2.1). (2'12) Near 
a bifurcation point, the order parameter ff and/or q then slowly evolve 
toward their stable values. The detailed evolution can be obtained by 
adapting the multiscale method of ref. 12. 

In Fig. 4 coexistence between spin-glass and ferromagnetic phases is 
visualized. At a smaller 0 (Fig. 5) the spin-glass phase has lost its stability 
in favor of a mixed phase, which coexists with the ferromagnetic one. We 
have not depicted the cases in Figs. 2 and 3 where only one minimum of 
Ho is present. 

3. D I S C U S S I O N  

By adopting a soft-spin version of van Hemmen's spin glass model, ~6~ 
we have analyzed the effect of random parameters in the simple double-well 
Desai-Zwanzig model. (1) 

As in the original model, (6) a reduced description holds in the thermo- 
dynamic limit N ~ oo. The bifurcation diagrams for stationary probability 
densities are qualitatively similar to those corresponding to hard spins. (2) 
In particular, the spin-glass phase is never stable unless the randomness is 
large enough ( J >  J o)- Dynamic relaxation to stable phases is exponential 
for close enough initial distributions, as is the case for Glauber dynamics 
of the hard-spin model. (9) A perturbation study (similar to those in refs. 1, 
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2, and 12) shows that the critical exponents for the different bifurcations 
between stationary probability densities are the classical ones (as in the 
double-well potential(i)). This contrast with models with stable time- 
dependent probability densities, where the presence of random parameters 
strongly alters the critical exponents and the phases themselves/5~ 

The stability of the different phases in Eqs. (1.5) is analyzed with the 
help of a Liapunov function first derived by Shiino ~11) for the Desai and 
Zwanzig model. Assuming that the only attractors with a time-independent 
Liapunov function (2.5)-(2.6) are stationary solutions of (1.5), some global 
stability results follow. In particular, when only one phase in the bifurca- 
tion diagrams is linearly stable, all initial probability densities will evolve 
toward it. 

Phase coexistence between the ferromagnetic and the spin-glass or 
mixed phases is found if J >  J0 (enough randomness). Thus, metastability 
and hysteresis are possible. The level curves of the Liapunov function 
shown in Fig. 4 suggest that the basin of attraction of the spin-glass phase 
is larger than that of the ferromagnetic phase. For a smaller 0, the basin 
corresponding to the ferromagnetic phase is wider than before (Fig. 5), but 
it is still smaller than that of the mixed phase which branched off from the 
spin glass solution. 

The initial conditions for (1.5) are functions (probability densities), 
while the visualization in Figs. 4 and 5 presupposes that the only relevant 
information about the initial data are the values of ~ and q. This turns out 
to be the case close enough to the stationary densities and near bifurcation 
points. Comparison with Brownian simulation is necessary to check the 
further validity of our visualization and to ultimately assess the usefulness 
of the Liapunov function. This task will be undertaken in a future 
publication. 
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